In a nutshell: Gaussian elimination with partial pivoting

Given a system of *n* linear equations in *n* unknowns $A\mathbf{u} = \mathbf{v}$, our goal is to find \mathbf{u} if it is unique, or if there are zero or infinitely many solutions.

- 1. Set up the augmented matrix $A_{aug} \leftarrow (A \mid \mathbf{v})$ and denote the entries of this matrix $a_{i,j}$.
- 2. Set $i, j \leftarrow 1$.
 - a. If j = N + 1, we are done.
 - b. Find the largest entry in absolute value for the values $a_{k,j}$ where k = i + 1, ..., n. If there are multiple entries that are largest in absolute value, just pick one. Let *m* be the entry that was chosen.
 - (i) If all entries are zero, there are either zero or infinitely many solutions, so increment j and return to Step 2a.
 - c. Swap Rows *i* and *m*.
 - d. Set $k \leftarrow i+1$,
 - (i) If k = N + 1, increment *i* and *j* and return to Step 2*a*.
 - (ii) Add $-\frac{a_{k,j}}{a_{i,j}}$ each non-zero entry of Row *i* onto the corresponding entry of Row *k*.
 - (iii) Increment k and return to Step 2d(i).
- 3. The augmented matrix is now in row-echelon form:
 - a. If we did not flag that there may be either zero or infinitely many solutions, then there is one unique solution, and we can find that solution using backward substitution,
 - b. otherwise, if there are rows where the last entry is non-zero and all other entries are zero, then there are no solutions,
 - c. otherwise, there are infinitely many solutions, and each column that does not have a leading nonzero entry corresponds to a free variable.